Cinco transições da governamentalidade algorítmica na composição da temporalidade médica

Cinco transições da governamentalidade algorítmica na composição da temporalidade médica

Autores

DOI:

https://doi.org/10.5027/psicoperspectivas-Vol24-Issue2-fulltext-3457

Palavras-chave:

governamentalidade algorítmica, Inteligência Artificial, medicina, saúde, tempo

Resumo

A Inteligência Artificial tem permeado diversos cenários sociais, e a medicina não é exceção. Ela faz parte das recentes esperanças que se articulam para abordar problemas relacionados à temporalidade de suas rotinas habituais. Neste trabalho, analisamos cinco transformações que a Inteligência Artificial integra na organização da temporalidade médica, considerando como isso se articula com modificações nas dinâmicas de poder formuladas pela noção de governamentalidade algorítmica. Para isso, nos baseamos em um estudo do sistema de saúde no Chile, que considera o desenvolvimento de uma etnografia multissituada a partir de cenários ministeriais e de atendimento clínico público e privado. Produzimos informações por meio de etnografias focadas, análises de notícias e entrevistas aprofundadas com especialistas e profissionais, e configuramos os resultados a partir de análises abduzivas. As cinco transições descritas consideram o caráter algorítmico, iterativo, itinerante, intersticial e organísmico da temporalidade constituída por cenários em que participa a Inteligência Artificial. Concluímos recolhendo o vínculo dessas transformações na apreensão da governamentalidade algorítmica no âmbito médico.

Biografia do Autor

Jorge Castillo-Sepúlveda, Universidad de Santiago de Chile

Psicólogo por la Universidad de Santiago de Chile, Máster en Investigación en Psicología Social y Doctor en Psicología Social por la Universitat Autònoma de Barcelona. Académico en la Escuela de Psicología de la Universidad de Santiago de Chile, y miembro de la European Association for the Study of Science and Technology (EASST), la Society for Social Studies of Science (4S) y la Red de Estudios de Ciencia, Tecnología y Sociedad (CTS) de Chile. Ha participado como Investigador Responsable y como Coinvestigador en diversos proyectos que articulan la salud, la medicina, el espacio, la materialidad y el tiempo, particularmente desde la perspectiva de la Teoría del Actor-Red. Ha publicado en diversos libros y revistas nacionales e internacionales, que consideran Social Studies of Science, Athenea Digital, Saúde e Sociedade, entre otras.

José Antonio Román, Universidad Tecnológica Metropolitana

Psicólogo por la Pontificia Universidad Católica de Chile, Máster y Doctor en Psicología Social, por la Universidad Autónoma de Barcelona. Actualmente es Académico Regular del Departamento de Trabajo Social, Facultad de Humanidades y Tecnologías de la Comunicación Social, e Investigador del Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT) en Universidad Tecnológica Metropolitana. Ha sido investigador responsable y coinvestigador integrando equipos multisciplinarios tanto en proyectos de nacionales como internacionales. Dentro de sus trabajos recientes figuran publicaciones en Qualitative Sociology, Polis y Quaderns de Psicologia, entre otras.

Diego Gilabert, Universidad de Chile

Licenciado en Antropología Social, por la Universidad de Chile, y estudiante en el programa de Magíster en Antropología Sociocultural de la Universidad de Chile.

Ambar Angel Toledo, Universidad Alberto Hurtado

Licenciada en Antropología Social por la Universidad de Chile y estudiante del Magíster en Ciencia, Tecnología y Sociedad (CTS) de la Universidad Alberto Hurtado. Actualmente se desempeña como personal técnico y asistente de investigación en distintos proyectos FONDECYT.

Referências

Amaya-Santos, S., Jiménez-Pernett, J., & Bermudez-Tamayo, C. (2024). Health for whom? Intersectionality and biases in the use of artificial intelligence in clinical diagnosis. Anales del Sistema Sanitario de Navarra, 47(2), e1077. https://doi.org/10.23938/ASSN.1077

Bedi, A., Al Masri, M. K., Al Hennawi, H., Qadir, S., & Ottman, P. (2023). The integration of artificial intelligence into patient care: a case of atrial fibrillation caught by a smartwatch. Cureus, 15(3), e35941. https://doi.org/10.7759/cureus.35941

Beynon-Jones, S. M. (2012). Timing is everything: The demarcation of ‘later’ abortions in Scotland. Social Studies of Science, 42(1), 53-74. https://doi.org/10.1177/0306312711426596

Bhatt, C., Kumar, I., Vijayakumar, V., Singh, K. U., & Kumar, A. (2020). The state of the art of deep learning models in medical science and their challenges. Multimedia Systems, 27(4), 599-613. https://doi.org/10.1007/s00530-020-00694-1

Cambrosio, A., Keating, P., & Bourret, P. (2006). Objetividad regulatoria y sistemas de pruebas en medicina: el

caso de la cancerología. Convergencia, 13(42), 135-152.

Daston, L., & Galison, P. (2007). Objectivity. Zone Books.

Deleuze, G. (2006). Post-scriptum sobre las sociedades de control. Polis, 13, 1-7. Deleuze, G. (2014). El poder. Curso sobre Foucault II. Editorial Cactus.

Deleuze, G., & Guattari, F. (2002). Mil mesetas. Capitalismo y esquizofrenia. Pre-Textos.

Dunstan, J. (2025, marzo 8). Inteligencia artificial en la salud pública. El Mercurio. A12.

Figueroa-Barra, A., Del Aguila, D., Cerda, M., Gaspar, P. A., Terissi, L. D., Duran, M., & Valderrama, C. (2022).

Automatic language analysis identifies and predicts schizophrenia in first-episode of psychosis.

Schizophrenia, 8(1), 53. https://doi.org/10.1038/s41537-022-00259-3

Foucault, M. (2006). Seguridad, territorio, población: Curso en el Collège de France: 1977-1978. Fondo de Cultura Económica.

Grabham, E. (2014). Legal form and temporal rationalities in UK work–life balance law. Australian Feminist Studies, 29(79), 67–84. https://doi.org/10.1080/08164649.2014.901280

Green, J., & Lynch, R. (2022). Rethinking chronicity: public health and the problem of temporality. Critical Public Health, 32(4), 433–437. https://doi.org/10.1080/09581596.2022.2101432

Hälterlein, J. (2021). Epistemologies of predictive policing: mathematical social science, social physics and machine learning. Big Data & Society, 8(1), 20539517211003118. https://doi.org/10.1177/20539517211003118

Hui, Y. (2022). Recursividad y contingencia. Caja Negra Editora.

Knight, J., Zhou, Y., Keen, C., Hareendranathan, A. R., Alves-Pereira, F., Ghasseminia, S., Wichuk, S., Brilz, A., Kirschner, D., & Jaremko, J. (2023). 2D/3D ultrasound diagnosis of pediatric distal radius fractures by human readers vs artificial intelligence. Scientific Reports, 13(1), 14535. https://doi.org/10.1038/s41598-023-41807-w

Knoblauch, H. (2005). Focused ethnography. Forum Qualitative Sozialforschung Forum Qualitative Social Research, 6(3), 1-14. https://doi.org/10.17169/fqs-6.3.20

König, P. D. (2020). Dissecting the algorithmic Leviathan: on the socio-political anatomy of algorithmic

governance. Philosophy & Technology, 33(3), 467-485. https://doi.org/10.1007/s13347-019-00363-w Kumah, E. A., McSherry, R., Bettany-Saltikov, J., van Schaik, P., Hamilton, S., Hogg, J., & Whittaker, V. (2022).

Evidence-informed practice versus evidence-based practice educational interventions for improving knowledge, attitudes, understanding, and behavior toward the application of evidence into practice: A comprehensive systematic review of UG student. Campbell Systematic Review, 18(2), e1233. https://doi.org/10.1002/cl2.1233

Latour, B. (1984). The powers of association. The Sociological Review, 32(1_suppl), 264–280.

https://doi.org/10.1111/j.1467-954X.1984.tb00115.x

Latour, B. (2007). Nunca fuimos modernos. Siglo XXI.

López, C., Balmaceda, T., Zeller, M., Peler, J., Aguerre, C., & Tagliazucchi, E. (2024). Ok, Pandora: Seis ensayos sobre inteligencia artificial. El Gato y La Caja.

Luchini, C., Pea, A., & Scarpa, A. (2022). Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer, 126(1), 4-9. https://doi.org/10.1038/s41416-021-01633-1

Malaspina, C. (2018). An epistemology of noise. Bloomsbury Academic.

Marcus, G. E. (1995). Ethnography in/of the world system: the emergence of multi-sited ethnography. Annual Review of Anthropology, 24(1), 95-117.

O’Byrne, P., & Holmes, D. (2009). Public health STI/HIV surveillance: exploring the society of control.

Surveillance & Society, 7(1), 58-70. https://doi.org/10.24908/ss.v7i1.3308

Pineda, J. M. (2022). Modelos predictivos en salud basados en aprendizaje de maquina (machine learning).

Revista Médica Clínica Las Condes, 33(6), 583-590. https://doi.org/10.1016/j.rmclc.2022.11.002 Rouvroy, A., & Berns, T. (2013). Algorithmic governmentality and prospects of emancipation. Disparateness

as a precondition for individuation through relationships? Réseaux, 177(1), 163-196.

Shajari, S., Kuruvinashetti, K., Komeili, A., & Sundararaj, U. (2023). The emergence of AI-based wearable sensors for digital health technology: a review. Sensors, 23(23), 9498. https://doi.org/10.3390/s23239498

Simondon, G. (2015). La individuación: a la luz de las nociones de forma y de información (2a ed). Editorial Cactus.

Sisto, V., & Zelaya, V. (2014). La etnografía de dispositivos y el estudio de los instrumentos de rendición de cuentas como prácticas. Universitas Psychologica, 12(4). https://doi.org/10.11144/Javeriana.UPSY12- 4.edha

Timmermans, S., & Tavory, I. (2022). Data analysis in qualitative research: theorizing with abductive analysis.

University of Chicago Press.

Tironi, M., & Valderrama, M. (2022). worth-making in a datafied world: urban cycling, smart urbanism, and technologies of justification in Santiago de Chile. The Information Society, 38(2), 100–116. https://doi.org/10.1080/01972243.2022.2027587

Zuboff, S. (2023). The age of surveillance capitalism. En W. (Editor) Longhofer, Social theory re-wired: new connections to classical and contemporary perspectives (3ra ed., pp. 203–213). Routledge.

Publicado

2025-07-15 — Atualizado em 2025-07-15

Versões

Como Citar

Castillo-Sepúlveda, J., Román, J. A., Gilabert, D., & Angel Toledo, A. (2025). Cinco transições da governamentalidade algorítmica na composição da temporalidade médica. Psicoperspectivas, 24(2). https://doi.org/10.5027/psicoperspectivas-Vol24-Issue2-fulltext-3457
Loading...