Five transitions of algorithmic governmentality in the composition of medical temporality
DOI:
https://doi.org/10.5027/psicoperspectivas-Vol24-Issue2-fulltext-3457Keywords:
algorithmic governmentality, Artificial Intelligence, medicina, salud, tiempoAbstract
Artificial Intelligence has permeated multiple social scenarios and medicine is no exception. It is part of the recent hopes articulated to address issues related to the temporality of their usual routines. In this paper we analyze five transformations that Artificial Intelligence integrates in the ordering of medical temporality, considering how this is articulated to modifications in the dynamics of power formulated by the notion of algorithmic governmentality. To this end, we rely on a study of the health system in Chile, which considers the development of a multi-sited ethnography based on ministerial scenarios and public and private clinical care. We have produced information through focused ethnographies, news analysis and in-depth interviews with experts and professionals, and configured results based on abductive analysis. The five transitions described consider the algorithmic, iterative, itinerant, interstitial and organismic character of the temporality constituted by scenarios in which Artificial Intelligence participates. We conclude by taking up the link between these transformations in the apprehension of algorithmic governmentality for the medical field.
References
Amaya-Santos, S., Jiménez-Pernett, J., & Bermudez-Tamayo, C. (2024). Health for whom? Intersectionality and biases in the use of artificial intelligence in clinical diagnosis. Anales del Sistema Sanitario de Navarra, 47(2), e1077. https://doi.org/10.23938/ASSN.1077
Bedi, A., Al Masri, M. K., Al Hennawi, H., Qadir, S., & Ottman, P. (2023). The integration of artificial intelligence into patient care: a case of atrial fibrillation caught by a smartwatch. Cureus, 15(3), e35941. https://doi.org/10.7759/cureus.35941
Beynon-Jones, S. M. (2012). Timing is everything: The demarcation of ‘later’ abortions in Scotland. Social Studies of Science, 42(1), 53-74. https://doi.org/10.1177/0306312711426596
Bhatt, C., Kumar, I., Vijayakumar, V., Singh, K. U., & Kumar, A. (2020). The state of the art of deep learning models in medical science and their challenges. Multimedia Systems, 27(4), 599-613. https://doi.org/10.1007/s00530-020-00694-1
Cambrosio, A., Keating, P., & Bourret, P. (2006). Objetividad regulatoria y sistemas de pruebas en medicina: el
caso de la cancerología. Convergencia, 13(42), 135-152.
Daston, L., & Galison, P. (2007). Objectivity. Zone Books.
Deleuze, G. (2006). Post-scriptum sobre las sociedades de control. Polis, 13, 1-7. Deleuze, G. (2014). El poder. Curso sobre Foucault II. Editorial Cactus.
Deleuze, G., & Guattari, F. (2002). Mil mesetas. Capitalismo y esquizofrenia. Pre-Textos.
Dunstan, J. (2025, marzo 8). Inteligencia artificial en la salud pública. El Mercurio. A12.
Figueroa-Barra, A., Del Aguila, D., Cerda, M., Gaspar, P. A., Terissi, L. D., Duran, M., & Valderrama, C. (2022).
Automatic language analysis identifies and predicts schizophrenia in first-episode of psychosis.
Schizophrenia, 8(1), 53. https://doi.org/10.1038/s41537-022-00259-3
Foucault, M. (2006). Seguridad, territorio, población: Curso en el Collège de France: 1977-1978. Fondo de Cultura Económica.
Grabham, E. (2014). Legal form and temporal rationalities in UK work–life balance law. Australian Feminist Studies, 29(79), 67–84. https://doi.org/10.1080/08164649.2014.901280
Green, J., & Lynch, R. (2022). Rethinking chronicity: public health and the problem of temporality. Critical Public Health, 32(4), 433–437. https://doi.org/10.1080/09581596.2022.2101432
Hälterlein, J. (2021). Epistemologies of predictive policing: mathematical social science, social physics and machine learning. Big Data & Society, 8(1), 20539517211003118. https://doi.org/10.1177/20539517211003118
Hui, Y. (2022). Recursividad y contingencia. Caja Negra Editora.
Knight, J., Zhou, Y., Keen, C., Hareendranathan, A. R., Alves-Pereira, F., Ghasseminia, S., Wichuk, S., Brilz, A., Kirschner, D., & Jaremko, J. (2023). 2D/3D ultrasound diagnosis of pediatric distal radius fractures by human readers vs artificial intelligence. Scientific Reports, 13(1), 14535. https://doi.org/10.1038/s41598-023-41807-w
Knoblauch, H. (2005). Focused ethnography. Forum Qualitative Sozialforschung Forum Qualitative Social Research, 6(3), 1-14. https://doi.org/10.17169/fqs-6.3.20
König, P. D. (2020). Dissecting the algorithmic Leviathan: on the socio-political anatomy of algorithmic
governance. Philosophy & Technology, 33(3), 467-485. https://doi.org/10.1007/s13347-019-00363-w Kumah, E. A., McSherry, R., Bettany-Saltikov, J., van Schaik, P., Hamilton, S., Hogg, J., & Whittaker, V. (2022).
Evidence-informed practice versus evidence-based practice educational interventions for improving knowledge, attitudes, understanding, and behavior toward the application of evidence into practice: A comprehensive systematic review of UG student. Campbell Systematic Review, 18(2), e1233. https://doi.org/10.1002/cl2.1233
Latour, B. (1984). The powers of association. The Sociological Review, 32(1_suppl), 264–280.
https://doi.org/10.1111/j.1467-954X.1984.tb00115.x
Latour, B. (2007). Nunca fuimos modernos. Siglo XXI.
López, C., Balmaceda, T., Zeller, M., Peler, J., Aguerre, C., & Tagliazucchi, E. (2024). Ok, Pandora: Seis ensayos sobre inteligencia artificial. El Gato y La Caja.
Luchini, C., Pea, A., & Scarpa, A. (2022). Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer, 126(1), 4-9. https://doi.org/10.1038/s41416-021-01633-1
Malaspina, C. (2018). An epistemology of noise. Bloomsbury Academic.
Marcus, G. E. (1995). Ethnography in/of the world system: the emergence of multi-sited ethnography. Annual Review of Anthropology, 24(1), 95-117.
O’Byrne, P., & Holmes, D. (2009). Public health STI/HIV surveillance: exploring the society of control.
Surveillance & Society, 7(1), 58-70. https://doi.org/10.24908/ss.v7i1.3308
Pineda, J. M. (2022). Modelos predictivos en salud basados en aprendizaje de maquina (machine learning).
Revista Médica Clínica Las Condes, 33(6), 583-590. https://doi.org/10.1016/j.rmclc.2022.11.002 Rouvroy, A., & Berns, T. (2013). Algorithmic governmentality and prospects of emancipation. Disparateness
as a precondition for individuation through relationships? Réseaux, 177(1), 163-196.
Shajari, S., Kuruvinashetti, K., Komeili, A., & Sundararaj, U. (2023). The emergence of AI-based wearable sensors for digital health technology: a review. Sensors, 23(23), 9498. https://doi.org/10.3390/s23239498
Simondon, G. (2015). La individuación: a la luz de las nociones de forma y de información (2a ed). Editorial Cactus.
Sisto, V., & Zelaya, V. (2014). La etnografía de dispositivos y el estudio de los instrumentos de rendición de cuentas como prácticas. Universitas Psychologica, 12(4). https://doi.org/10.11144/Javeriana.UPSY12- 4.edha
Timmermans, S., & Tavory, I. (2022). Data analysis in qualitative research: theorizing with abductive analysis.
University of Chicago Press.
Tironi, M., & Valderrama, M. (2022). worth-making in a datafied world: urban cycling, smart urbanism, and technologies of justification in Santiago de Chile. The Information Society, 38(2), 100–116. https://doi.org/10.1080/01972243.2022.2027587
Zuboff, S. (2023). The age of surveillance capitalism. En W. (Editor) Longhofer, Social theory re-wired: new connections to classical and contemporary perspectives (3ra ed., pp. 203–213). Routledge.
Downloads
Published
Versions
- 2025-07-15 (2)
- 2025-07-15 (1)
How to Cite
Issue
Section
License
Copyright (c) 2025 Jorge Castillo-Sepúlveda, José Antonio Román, Diego Gilabert, Ambar Angel Toledo

This work is licensed under a Creative Commons Attribution 4.0 International License.
All manuscript will be published under the Creative Commons 4.0 International License.